Numerical Solution of Diffraction Problems: A High-Order Perturbation of Surfaces and Asymptotic Waveform Evaluation Method

نویسنده

  • David P. Nicholls
چکیده

The rapid and robust simulation of linear waves interacting with layered periodic media is a crucial capability in many areas of scientific and engineering interest. High-order perturbation of surfaces (HOPS) algorithms are interfacial methods which recursively estimate scattering quantities via perturbation in the interface shape heights/slopes. For a single incidence wavelength such methods are the most efficient available in the parameterized setting we consider here. In the current contribution we generalize one of these HOPS schemes by incorporating a further expansion in the wavelength about a base configuration which constitutes an “asymptotic waveform evaluation” (AWE). We not only provide a detailed specification of the algorithm, but also verify the scheme and point out its benefits and shortcomings. With numerical experiments we show the remarkable efficiency, fidelity, and high-order accuracy one can achieve with an implementation of this algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method

‎The controlled harmonic oscillator with retarded damping‎, ‎is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems‎. ‎In this paper‎, ‎to solve this problem‎, ‎we presented an analytical method‎. ‎This approach is based on the homotopy perturbation method‎. ‎The solution procedure becomes easier‎, ‎simpler and mor...

متن کامل

Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation

The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...

متن کامل

Nonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique

In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...

متن کامل

Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage

The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the infl...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2017